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Chapter B3. Interpolation and

Extrapolation
SUBROUTINE polint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value x, this routine returns a value y,
and an error estimate dy. If P (x) is the polynomial of degree N − 1 such that P (xai) =
yai, i = 1, . . . , N , then the returned value y = P (x).

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,den,ho
n=assert_eq(size(xa),size(ya),’polint’)
c=ya Initialize the tableau of c’s and d’s.
d=ya
ho=xa-x
ns=iminloc(abs(x-xa)) Find index ns of closest table entry.
y=ya(ns) This is the initial approximation to y.
ns=ns-1
do m=1,n-1 For each column of the tableau,

den(1:n-m)=ho(1:n-m)-ho(1+m:n) we loop over the current c’s and d’s and up-
date them.if (any(den(1:n-m) == 0.0)) &

call nrerror(’polint: calculation failure’)
This error can occur only if two input xa’s are (to within roundoff) identical.

den(1:n-m)=(c(2:n-m+1)-d(1:n-m))/den(1:n-m)
d(1:n-m)=ho(1+m:n)*den(1:n-m) Here the c’s and d’s are updated.
c(1:n-m)=ho(1:n-m)*den(1:n-m)
if (2*ns < n-m) then After each column in the tableau is completed, we decide

which correction, c or d, we want to add to our accu-
mulating value of y, i.e., which path to take through
the tableau—forking up or down. We do this in such a
way as to take the most “straight line” route through the
tableau to its apex, updating ns accordingly to keep track
of where we are. This route keeps the partial approxima-
tions centered (insofar as possible) on the target x. The
last dy added is thus the error indication.

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE polint

SUBROUTINE ratint(xa,ya,x,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), INTENT(IN) :: x
REAL(SP), INTENT(OUT) :: y,dy

Given arrays xa and ya of length N , and given a value of x, this routine returns a value of y
and an accuracy estimate dy. The value returned is that of the diagonal rational function,
evaluated at x, that passes through the N points (xai,yai), i = 1 . . . N .

INTEGER(I4B) :: m,n,ns
REAL(SP), DIMENSION(size(xa)) :: c,d,dd,h,t
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REAL(SP), PARAMETER :: TINY=1.0e-25_sp A small number.
n=assert_eq(size(xa),size(ya),’ratint’)
h=xa-x
ns=iminloc(abs(h))
y=ya(ns)
if (x == xa(ns)) then

dy=0.0
RETURN

end if
c=ya
d=ya+TINY The TINY part is needed to prevent

a rare zero-over-zero condition.ns=ns-1
do m=1,n-1

t(1:n-m)=(xa(1:n-m)-x)*d(1:n-m)/h(1+m:n) h will never be zero, since this was
tested in the initializing loop.dd(1:n-m)=t(1:n-m)-c(2:n-m+1)

if (any(dd(1:n-m) == 0.0)) &
call nrerror(’failure in ratint’) This error condition indicates that

the interpolating function has a
pole at the requested value of
x.

dd(1:n-m)=(c(2:n-m+1)-d(1:n-m))/dd(1:n-m)
d(1:n-m)=c(2:n-m+1)*dd(1:n-m)
c(1:n-m)=t(1:n-m)*dd(1:n-m)
if (2*ns < n-m) then

dy=c(ns+1)
else

dy=d(ns)
ns=ns-1

end if
y=y+dy

end do
END SUBROUTINE ratint

� � �

SUBROUTINE spline(x,y,yp1,ypn,y2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : tridag
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), INTENT(IN) :: yp1,ypn
REAL(SP), DIMENSION(:), INTENT(OUT) :: y2

Given arrays x and y of length N containing a tabulated function, i.e., yi = f(xi), with x1 <
x2 < . . . < xN , and given values yp1 and ypn for the first derivative of the interpolating
function at points 1 and N , respectively, this routine returns an array y2 of length N
that contains the second derivatives of the interpolating function at the tabulated points
xi. If yp1 and/or ypn are equal to 1 × 1030 or larger, the routine is signaled to set the
corresponding boundary condition for a natural spline, with zero second derivative on that
boundary.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(x)) :: a,b,c,r
n=assert_eq(size(x),size(y),size(y2),’spline’)
c(1:n-1)=x(2:n)-x(1:n-1) Set up the tridiagonal equations.
r(1:n-1)=6.0_sp*((y(2:n)-y(1:n-1))/c(1:n-1))
r(2:n-1)=r(2:n-1)-r(1:n-2)
a(2:n-1)=c(1:n-2)
b(2:n-1)=2.0_sp*(c(2:n-1)+a(2:n-1))
b(1)=1.0
b(n)=1.0
if (yp1 > 0.99e30_sp) then The lower boundary condition is set either to be “nat-

ural”r(1)=0.0
c(1)=0.0

else or else to have a specified first derivative.
r(1)=(3.0_sp/(x(2)-x(1)))*((y(2)-y(1))/(x(2)-x(1))-yp1)
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c(1)=0.5
end if The upper boundary condition is set either to be

“natural”if (ypn > 0.99e30_sp) then
r(n)=0.0
a(n)=0.0

else or else to have a specified first derivative.
r(n)=(-3.0_sp/(x(n)-x(n-1)))*((y(n)-y(n-1))/(x(n)-x(n-1))-ypn)
a(n)=0.5

end if
call tridag(a(2:n),b(1:n),c(1:n-1),r(1:n),y2(1:n))
END SUBROUTINE spline

FUNCTION splint(xa,ya,y2a,x)
USE nrtype; USE nrutil, ONLY : assert_eq,nrerror
USE nr, ONLY: locate
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya,y2a
REAL(SP), INTENT(IN) :: x
REAL(SP) :: splint

Given the arrays xa and ya, which tabulate a function (with the xai’s in increasing or
decreasing order), and given the array y2a, which is the output from spline above, and
given a value of x, this routine returns a cubic-spline interpolated value. The arrays xa, ya
and y2a are all of the same size.

INTEGER(I4B) :: khi,klo,n
REAL(SP) :: a,b,h
n=assert_eq(size(xa),size(ya),size(y2a),’splint’)
klo=max(min(locate(xa,x),n-1),1)

We will find the right place in the table by means of locate’s bisection algorithm. This is
optimal if sequential calls to this routine are at random values of x. If sequential calls are in
order, and closely spaced, one would do better to store previous values of klo and khi and
test if they remain appropriate on the next call.

khi=klo+1 klo and khi now bracket the input value of x.
h=xa(khi)-xa(klo)
if (h == 0.0) call nrerror(’bad xa input in splint’) The xa’s must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
splint=a*ya(klo)+b*ya(khi)+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(h**2)/6.0_sp
END FUNCTION splint

f90
klo=max(min(locate(xa,x),n-1),1) In the Fortran 77 version of splint,
there is in-line code to find the location in the table by bisection. Here
we prefer an explicit call to locate, which performs the bisection. On

some massively multiprocessor (MMP) machines, one might substitute a different,
more parallel algorithm (see next note).

� � �

FUNCTION locate(xx,x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xx
REAL(SP), INTENT(IN) :: x
INTEGER(I4B) :: locate

Given an array xx(1:N), and given a value x, returns a value j such that x is between
xx(j) and xx(j + 1). xx must be monotonic, either increasing or decreasing. j = 0 or
j = N is returned to indicate that x is out of range.

INTEGER(I4B) :: n,jl,jm,ju
LOGICAL :: ascnd



1046 Chapter B3. Interpolation and Extrapolation

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
jl=0 Initialize lower
ju=n+1 and upper limits.
do

if (ju-jl <= 1) exit Repeat until this condition is satisfied.
jm=(ju+jl)/2 Compute a midpoint,
if (ascnd .eqv. (x >= xx(jm))) then

jl=jm and replace either the lower limit
else

ju=jm or the upper limit, as appropriate.
end if

end do
if (x == xx(1)) then Then set the output, being careful with the endpoints.

locate=1
else if (x == xx(n)) then

locate=n-1
else

locate=jl
end if
END FUNCTION locate

The use of bisection is perhaps a sin on a genuinely parallel machine, but
(since the process takes only logarithmically many sequential steps) it is at
most a small sin. One can imagine a “fully parallel” implementation like,

k=iminloc(abs(x-xx))
if ((x < xx(k)) .eqv. (xx(1) < xx(n))) then

locate=k-1
else

locate=k
end if

Problem is, unless the number of physical (not logical) processors participating in
the iminloc is larger than N , the length of the array, this “parallel” code turns a
log N algorithm into one scaling as N , quite an unacceptable inefficiency. So we
prefer to be small sinners and bisect.

SUBROUTINE hunt(xx,x,jlo)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: jlo
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: xx

Given an array xx(1:N), and given a value x, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xxmust be monotonic, either increasing or decreasing. jlo = 0
or jlo = N is returned to indicate that x is out of range. jlo on input is taken as the
initial guess for jlo on output.

INTEGER(I4B) :: n,inc,jhi,jm
LOGICAL :: ascnd
n=size(xx)
ascnd = (xx(n) >= xx(1)) True if ascending order of table, false otherwise.
if (jlo <= 0 .or. jlo > n) then Input guess not useful. Go immediately to bisec-

tion.jlo=0
jhi=n+1

else
inc=1 Set the hunting increment.
if (x >= xx(jlo) .eqv. ascnd) then Hunt up:

do
jhi=jlo+inc
if (jhi > n) then Done hunting, since off end of table.
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jhi=n+1
exit

else
if (x < xx(jhi) .eqv. ascnd) exit
jlo=jhi Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

else Hunt down:
jhi=jlo
do

jlo=jhi-inc
if (jlo < 1) then Done hunting, since off end of table.

jlo=0
exit

else
if (x >= xx(jlo) .eqv. ascnd) exit
jhi=jlo Not done hunting,
inc=inc+inc so double the increment

end if
end do and try again.

end if
end if Done hunting, value bracketed.
do Hunt is done, so begin the final bisection phase:

if (jhi-jlo <= 1) then
if (x == xx(n)) jlo=n-1
if (x == xx(1)) jlo=1
exit

else
jm=(jhi+jlo)/2
if (x >= xx(jm) .eqv. ascnd) then

jlo=jm
else

jhi=jm
end if

end if
end do
END SUBROUTINE hunt

� � �

FUNCTION polcoe(x,y)
USE nrtype; USE nrutil, ONLY : assert_eq,outerdiff
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x,y
REAL(SP), DIMENSION(size(x)) :: polcoe

Given same-size arrays x and y containing a tabulated function yi = f(xi), this routine

returns a same-size array of coefficients cj , such that yi =
∑

j cjx
j−1
i .

INTEGER(I4B) :: i,k,n
REAL(SP), DIMENSION(size(x)) :: s
REAL(SP), DIMENSION(size(x),size(x)) :: a
n=assert_eq(size(x),size(y),’polcoe’)
s=0.0 Coefficients si of the master polynomial P (x) are found by

recurrence.s(n)=-x(1)
do i=2,n

s(n+1-i:n-1)=s(n+1-i:n-1)-x(i)*s(n+2-i:n)
s(n)=s(n)-x(i)

end do
a=outerdiff(x,x) Make vector wj =

∏
j �=n(xj −xn), using polcoe for tempo-
rary storage.polcoe=product(a,dim=2,mask=a /= 0.0)
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Now do synthetic division by x − xj . The division for all xj can be done in parallel (on a
parallel machine), since the : in the loop below is over j.

a(:,1)=-s(1)/x(:)
do k=2,n

a(:,k)=-(s(k)-a(:,k-1))/x(:)
end do
s=y/polcoe
polcoe=matmul(s,a) Solve linear system.
END FUNCTION polcoe

For a description of the coding here, see §22.3, especially equation
(22.3.9). You might also want to compare the coding here with the
Fortran 77 version, and also look at the description of the method on

p. 84 in Volume 1. The Fortran 90 implementation here is in fact much closer to that
description than is the Fortran 77 method, which goes through some acrobatics to
roll the synthetic division and matrix multiplication into a single set of two nested
loops. The price we pay, here, is storage for the matrix a. Since the degree of any
useful polynomial is not a very large number, this is essentially no penalty.

Also worth noting is the way that parallelism is brought to the required synthetic
division. For a single such synthetic division (e.g., as accomplished by the nrutil
routine poly term), parallelism can be obtained only by recursion. Here things
are much simpler, because we need a whole bunch of simultaneous and independent
synthetic divisions; so we can just do them in the obvious, data-parallel, way.

FUNCTION polcof(xa,ya)
USE nrtype; USE nrutil, ONLY : assert_eq,iminloc
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: xa,ya
REAL(SP), DIMENSION(size(xa)) :: polcof

Given same-size arrays xa and ya containing a tabulated function yai = f(xai), this routine

returns a same-size array of coefficients cj such that yai =
∑

j cj xa
j−1
i .

INTEGER(I4B) :: j,k,m,n
REAL(SP) :: dy
REAL(SP), DIMENSION(size(xa)) :: x,y
n=assert_eq(size(xa),size(ya),’polcof’)
x=xa
y=ya
do j=1,n

m=n+1-j
call polint(x(1:m),y(1:m),0.0_sp,polcof(j),dy)

Use the polynomial interpolation routine of §3.1 to extrapolate to x = 0.
k=iminloc(abs(x(1:m))) Find the remaining xk of smallest absolute value,
where (x(1:m) /= 0.0) y(1:m)=(y(1:m)-polcof(j))/x(1:m) reduce all the terms,
y(k:m-1)=y(k+1:m) and eliminate xk.
x(k:m-1)=x(k+1:m)

end do
END FUNCTION polcof

� � �
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SUBROUTINE polin2(x1a,x2a,ya,x1,x2,y,dy)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: y,dy

Given arrays x1a of length M and x2a of length N of independent variables, and an M ×N
array of function values ya, tabulated at the grid points defined by x1a and x2a, and given
values x1 and x2 of the independent variables, this routine returns an interpolated function
value y, and an accuracy indication dy (based only on the interpolation in the x1 direction,
however).

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: ymtmp
REAL(SP), DIMENSION(size(x2a)) :: yntmp
m=assert_eq(size(x1a),size(ya,1),’polin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),’polin2: ndum’)
do j=1,m Loop over rows.

yntmp=ya(j,:) Copy row into temporary storage.
call polint(x2a,yntmp,x2,ymtmp(j),dy) Interpolate answer into temporary stor-

age.end do
call polint(x1a,ymtmp,x1,y,dy) Do the final interpolation.
END SUBROUTINE polin2

� � �

SUBROUTINE bcucof(y,y1,y2,y12,d1,d2,c)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: d1,d2
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), DIMENSION(4,4), INTENT(OUT) :: c

Given arrays y, y1, y2, and y12, each of length 4, containing the function, gradients, and
cross derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1- and 2-
directions, this routine returns the 4× 4 table c that is used by routine bcuint for bicubic
interpolation.

REAL(SP), DIMENSION(16) :: x
REAL(SP), DIMENSION(16,16) :: wt
DATA wt /1,0,-3,2,4*0,-3,0,9,-6,2,0,-6,4,&

8*0,3,0,-9,6,-2,0,6,-4,10*0,9,-6,2*0,-6,4,2*0,3,-2,6*0,-9,6,&
2*0,6,-4,4*0,1,0,-3,2,-2,0,6,-4,1,0,-3,2,8*0,-1,0,3,-2,1,0,-3,&
2,10*0,-3,2,2*0,3,-2,6*0,3,-2,2*0,-6,4,2*0,3,-2,0,1,-2,1,5*0,&
-3,6,-3,0,2,-4,2,9*0,3,-6,3,0,-2,4,-2,10*0,-3,3,2*0,2,-2,2*0,&
-1,1,6*0,3,-3,2*0,-2,2,5*0,1,-2,1,0,-2,4,-2,0,1,-2,1,9*0,-1,2,&
-1,0,1,-2,1,10*0,1,-1,2*0,-1,1,6*0,-1,1,2*0,2,-2,2*0,-1,1/

x(1:4)=y Pack a temporary vector x.
x(5:8)=y1*d1
x(9:12)=y2*d2
x(13:16)=y12*d1*d2
x=matmul(wt,x) Matrix multiply by the stored table.
c=reshape(x,(/4,4/),order=(/2,1/)) Unpack the result into the output table.
END SUBROUTINE bcucof
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f90
x=matmul(wt,x) ... c=reshape(x,(/4,4/),order=(/2,1/)) It is a power-
ful technique to combine the matmul intrinsic with reshape’s of the
input or output. The idea is to use matmul whenever the calculation

can be cast into the form of a linear mapping between input and output objects.
Here the order=(/2,1/) parameter specifies that we want the packing to be by
rows, not by Fortran’s default of columns. (In this two-dimensional case, it’s the
equivalent of applying transpose.)

SUBROUTINE bcuint(y,y1,y2,y12,x1l,x1u,x2l,x2u,x1,x2,ansy,ansy1,ansy2)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : bcucof
IMPLICIT NONE
REAL(SP), DIMENSION(4), INTENT(IN) :: y,y1,y2,y12
REAL(SP), INTENT(IN) :: x1l,x1u,x2l,x2u,x1,x2
REAL(SP), INTENT(OUT) :: ansy,ansy1,ansy2

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described
in bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1-
direction; x2l and x2u likewise for the 2-direction; and x1,x2, the coordinates of the
desired point for the interpolation. The interpolated function value is returned as ansy,
and the interpolated gradient values as ansy1 and ansy2. This routine calls bcucof.

INTEGER(I4B) :: i
REAL(SP) :: t,u
REAL(SP), DIMENSION(4,4) :: c
call bcucof(y,y1,y2,y12,x1u-x1l,x2u-x2l,c) Get the c’s.
if (x1u == x1l .or. x2u == x2l) call &

nrerror(’bcuint: problem with input values - boundary pair equal?’)
t=(x1-x1l)/(x1u-x1l) Equation (3.6.4).
u=(x2-x2l)/(x2u-x2l)
ansy=0.0
ansy2=0.0
ansy1=0.0
do i=4,1,-1 Equation (3.6.6).

ansy=t*ansy+((c(i,4)*u+c(i,3))*u+c(i,2))*u+c(i,1)
ansy2=t*ansy2+(3.0_sp*c(i,4)*u+2.0_sp*c(i,3))*u+c(i,2)
ansy1=u*ansy1+(3.0_sp*c(4,i)*t+2.0_sp*c(3,i))*t+c(2,i)

end do
ansy1=ansy1/(x1u-x1l)
ansy2=ansy2/(x2u-x2l)
END SUBROUTINE bcuint

� � �

SUBROUTINE splie2(x1a,x2a,ya,y2a)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: y2a

Given an M × N tabulated function ya, and N tabulated independent variables x2a, this
routine constructs one-dimensional natural cubic splines of the rows of ya and returns the
second derivatives in the M × N array y2a. (The array x1a is included in the argument
list merely for consistency with routine splin2.)

INTEGER(I4B) :: j,m,ndum
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splie2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splie2: ndum’)
do j=1,m

call spline(x2a,ya(j,:),1.0e30_sp,1.0e30_sp,y2a(j,:))
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Values 1 × 1030 signal a natural spline.
end do
END SUBROUTINE splie2

FUNCTION splin2(x1a,x2a,ya,y2a,x1,x2)
USE nrtype; USE nrutil, ONLY : assert_eq
USE nr, ONLY : spline,splint
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x1a,x2a
REAL(SP), DIMENSION(:,:), INTENT(IN) :: ya,y2a
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP) :: splin2

Given x1a, x2a, ya as described in splie2 and y2a as produced by that routine; and given
a desired interpolating point x1,x2; this routine returns an interpolated function value by
bicubic spline interpolation.

INTEGER(I4B) :: j,m,ndum
REAL(SP), DIMENSION(size(x1a)) :: yytmp,y2tmp2
m=assert_eq(size(x1a),size(ya,1),size(y2a,1),’splin2: m’)
ndum=assert_eq(size(x2a),size(ya,2),size(y2a,2),’splin2: ndum’)
do j=1,m

yytmp(j)=splint(x2a,ya(j,:),y2a(j,:),x2)
Perform m evaluations of the row splines constructed by splie2, using the one-dimensional
spline evaluator splint.

end do
call spline(x1a,yytmp,1.0e30_sp,1.0e30_sp,y2tmp2)

Construct the one-dimensional column spline and evaluate it.
splin2=splint(x1a,yytmp,y2tmp2,x1)
END FUNCTION splin2


